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ABSTRACT 

The standard formula for the shape of a beam in a collisionless 

electron storage ring can require substantial correction when the 

(linear) equations of motion have solutions that are nearly periodic or 

antiperiodic in time. We explain how to calculate approximations to 

beam shapes in such cases in a simple way. A similar analysis is also 

applied to the storage ring dispersion (or off-energy function). Out- 

technique is similar in its logic to the “two-time” and “smoothing” 

methods of Keller. 
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I. INTRODUCTION 

The steady-state of a beam in a collisionless electron storage ring 

is widely assumed to be adequately described by a simple formula 111 

that can in fact require significant correction under certain special 

circumstances. I” this paper, we explain how to calculate 

approximations to such corrections in a simple way. 

We were originaly led to consider this problem in connection with a 

study Of statistical-mechanical issues in the physics of 

electron-position colliding-beam storage rings. The motivation for the 

present work in that context is spelled out in the last section of [21, 

and need not be repeated here. 

Before we present our ideas in a more concrete way, we first 

provide some background for the general reader. 

Electrons in storage rings travel in bunches. When there is no 

counter-rotating positron beam (and when the current is not too high), 

the oscillation of an electron about the center of its bunch is governed 

primarily by magnets and by the process of synchrotron radiation. The 

effects of synchrotro” radiation tend to accumulate slowly. For times 

short enough that such effects can be ignored, the vertical or 

horizontal projection of the displacement of a” electron from the center 

of its bunch, in a plane perpendicular to the bunch center’s velocity, 

is determined by an equation of the form F’ 

Y + K(t)y = 0. (1.1) 

A dot signifies differentiation with respect to time, and the 

coefficient K (which, strictly speaking, should carry a subscript that 
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distinguishes horizontal from vertical) depends periodicaly on time. 

The period, T, is equal to the time needed for the bunch center to 

circle the storage ring once. 

As long as motion governed by (1.1) is stable,F2 and as long as 

(1 .I) has no periodic or antiperiodic solution (with period or 

antiperiod T), the most general solution to (1.1) is [31 

y(t) = 115(t)] 1’2cosc*+J; &I, 

were I and 6 are constants of integration, and where 6 is a positive, 

period-T function, characteristic of K. The effective frequency of the 

quasiharmonic motion (1.2) iS evidently (27rT)-' ji ds/e(s). In the 

storage ring literature, the dimensionless index 

(1.2) 

is referred to as the mtune.ft (We reserve the notation lf$lf for the 

integral of any periodic function (with period T) over any time interval 

of length T.) When K approaches a configuration that supports a 

periodic or antiperiodic solution--so that the general form (1.2) need 

not apply--then the tune approaches an integer or a half-integer. The 

general condition 

v = n/2 (1.4) 

for even or odd integer n, is referred to as "linear resonance." 

Nearness to linear resonance is the special circumstance, motioned in 

the first paragraph, under which the conventional calculation of 

electron beam profiles requires substantial correction. 
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For times long enough that radiation effects cannot be ignored, the 

displacement of an electron from its bunch center must be described by a 

linear equation that includes dissipation and fluctuation terms, 

; + Y(t); + K(t)y = h(t)<(t) , 

where < represents centered Gaussian noise with unit delta-function 

variance F3 

(1.5) 

<<(t)<(t’)> = hct-t’), <c(t)> - 0 , (1.6) 

and where the coefficient functions Y (non-negative) and A are both 

periodic in time, with period T, just like K. The phase space 

probability density P(y,v=$,t) for a system governed by (1.5) evolves in 

time according to the Fokker - Planck equation 

ap+JI ap 
at 27 

- K(t)y $ = & [Y(t)vP + ; A’(t) g] . (1.7) 

According to the conventional, intuitive account Cll, the 

steady-state distribution determined by (1.5) or (1.7) is given 

approximately, up to normalization, by 

exp - i~Y(s)dsjiQA2~s)B(s)ds~-’ {-&,+ B(t)[V - & F~~YJ 1 . i(t) ,2 
(1.8) 

Note that if expression (1.2) and its time derivative are substituted 

for y and v, respectively, in (1.8), then the expression in curved 

brackets reduces to the amplitude I that appears in (1.2). 
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How accurate is (1.8)? An exact calculation, described in Appendix 

A, reveals that (1.8) corresponds to the formal limit 

If+0 , A-'0 , Y/X2 fixed , (1.9) 

and that [from now on taking A to be formally O(.V”‘)) the remainder is 

formally a series in powers of Y, beginning with O(Y’). However, the 

coefficients in this series diverge when the tune approaches a resonant 

value given by (1.4) 

What is the leading behavior near resonance when these singular 

terms are summed? It is tempting to try reading this from the explicit 

tune dependence in equation (A.10). This is unrealistic, hOWk?Ver, 

because the function ,3(t), which enters the remainder in (A.10) not only 

through the definition of V, does not approach a simple limit as the 

system approaches linear resonance. Indeed, as we show in Appendix B, 

when K(t) approaches a configuration for which equation (1.1) has 

precisely one periodic or antiperiodic solution (‘noncoexistent” [51 

resonance), then a(t) becomes infinite for almost all values of t; while 

when K(t) approaches a configuration for which equation (1.1) has two 

periodic or antiperiodic solutions F4 (coexistent resonance) then B(t) 

can approach a finite limit, but the limit depends nontrivially on the 

function-space direction along which K(t) approaches its limit. 

In this paper, we explain a simple technique for deriving the 

leading behavior of the steady-state distribution near resonance 

directly from the Fokker-Planck equation (1.7). Our procedure, in a 

nutshell, is as follows: 
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We make the formal identification 

W(t) - K(t) - Kg(t) s 0 (u) , (1.10) 

where Kg(t) is a coefficient function for which equation (1.1) has at 

least one periodic or antiperiodic solution; and we also retain the 

identification 

X2(t) z O(Y) ; 

and then we calculate leading terms in the expression of the 

steady-state distribution as a formal series in powers of Y, 

(1.11) 

P(Y,“,t) = (PO+P1+P2+...)N , (1.12) 

where N is a normalization constant. In order to do this, we decompose 

equation (1.7) into a perturbative hierarchy. The first equation in the 

hierarchy involves only PO ; the second equation involves PO and P1 ; 

the (n+l ) ‘st equation involves P 
n-l and P,. In view of the exact 

expression (A.lO), we impose the boundary condition that each term in 

the expansion (1.12) must be periodic in time, with period T. 

One might naively expect that the first equation in this hierarchy 

determines POP UP to normalization; and that the second equation then 

determines P,, as a linear functional of PO; and so on. Unfortunately, 

the first equation has in fact many a priori admissible solutions. When 

almost any such solution is substituted into the second perturbative 

equation, however, there iS no periodic solution for P,. The requirement 

that a periodic solution for P, exist--without regard for its detailed 

construction--turns out to be sufficient to fix PO uniquely, up to 

normalization. In a similar fashion, P1 is determined by the second 

equation together with the requirement that the third equation be 
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self-consistent as an equation for P2, and so on. This kind of logic is 

very similar to that employed in the "two-time" and "smoothing" methods 

that are discussed in the applied mathematics literature C61. 

We shall perform such a calculation three times in this paper. In 

Section II, as a warm-up, we shall use the method just described to 

recover (1.8) from PO whe" K(t) is far from resonance. For this 

calculation, we shall ignore the prescription (1.10) concerning the 

nearness of K(t) to some Kg(t). In Sections III and IV, we shall 

calculate the leading behavior of the steady-state distribution near 

coexistent and noncoexistent resonance, respectively. I" the 

noncoexistent case, "leading behavior" will have to mean PO + p,, as we 

shall explain in Section IV. In the coexistent case, there will be no 

pressing reason to calculate beyond PO. In each of Sections III and IV, 

we shall check our work by verifying that when 6K becomes much larger 

than Y and A2 , then our approximate distribution returns to the 

nonresonant form (1.8). 

In each of these calculations, we shall from the outset take for 

granted, in accordance with the exact expression (A.4), that the desired 

distribution--either in zeroth order in Y, or when all perturbative 

contributions are summed--is a Gaussian in y and v, centered at y=v=O. 

This work will also be conducted under the assumption that there is 

no a priori connection (other than rough scale) between the coefficients 

Y,K, and h. In reality, however, h and K are intimately related 111, and 

i can in fact become infinite when K approaches some Kg. (In Appendix G, 

we shall show how to derive the leading behavior of A near resonance in 

a fashion very similar in spirit to our derivations of probability 

distributions in sections II-IV.) We shall discuss in the concluding 
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section, V, how this is to be reconciled with our scheme of perturbative 

calculation of probabilities. 

II. Nonresonant Steady State 

In this case, the perturbative hierarchy is 

;;e opo = 0 , 

XOPl =eo ’ 
gfp =<p, 1 02 

IiT- a’ etc., where the linear operator.? o and , are defined by 

~O++v&-K(t)~& , 

x, - & luct,v + ; h*(t)& . 

In view of (*.Za), the Operatorq satisfies the identity 

KoF j 1 
y=y(t),v=;(t) 

= $ [F(y=y(t), v=;(t), t)j , 

where F(y,v,t) is arbitrary, and where y(t) is any solution of (1.1). 

In view of (2.3), equation (2.la) says that when any solution to (l.l), 

and its time derivative, respectively, are substituted for y and Y in 

PO(y,v,t), then the result. is constant in time. 

(2.la) 

(2.lb) 

(Z.lc) 

(2.2a) 

(2.2b) 

(2.3) 
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It follows that 106 P0 must be a quadratic form in y and V with the 

same property, since we are assuming a priori that PC must be a centered 

Gaussian. Since P0 is periodic in time, with period T, the quadratic 

form 106 P0 must have coefficients that are also periodic functions of 

time, with period T. 

It turns out that as long as the tune ii does not satisfy (1.41, 

then, up to overall scale, there is only one quadratic form - the 

exprcsslon in curved brackets in (1.8) - that meets these 

specifications. To see this, proceed as follows: 

First, recognize that the following recipe yields every quadratic 

form in y and v that is time - independent when y satisfies (1.1) and 

V=y: Choose two arbitrary linearly independent solutions, y1 and y2, to 

(l.l), and then form all constant-coefficient quadratic forms in the 

combinations a, and a2, defined by 

ai q YS;p) - vYi(t) . 

The completeness of this construction follows from the fact that the 

Wronskian of any two solutions of (1.1) must be constant in time. .~ 

The desired result concerning the quadratic form log PO then 

follows directly from this construction, once one writes y, and y2 in 

the form (1.2). 

Thus, we write, up to normalization 

2 

pO = exp - ai& 1 
+ p(t)lv - ;T Y KtT L?(t)j2j . 

(2.4) 

(2.5) 

This is as far as we can go with (Z.la). In order to determine ~1, we 
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now consider the requirement that (2.lb) be consistent with periodic P,. 

As before, we begin by replacing y and v, in both sides of (*.lb), 

by a solution to (1.1) and its time derivative. In view of (1.21, 

(Z.Zb),(2.3), and (2.51, this yields 

&1~,[3(t),Y(t),t)j = e-all[Ht) - ah*(t)8(t)] 

*[l - *&sin216 + Jt&l] 

+ $xV(t)~(t)Isin 2jb+JL&]t : 

In order to exploit the periodicity of P, let us now integrate both 

sides of (2.6) over a time interval equal in length t0 an integral 

multiple of T. We then have 

P1jy(t+mT), y(t+mT), tj - P,[y(t),;(t),t] 

= P1jy(t+mT),y(t+mT),t+mT] - P,LYk),;(t),ti 

= meeal[dY(s)ds - a~A2(s)~(s)dsjil-aI] 

+ $aaIe -al{IQ$~v) JE+TIHtl,cv +Bct*)j - a8(t~)h2(t9j 

* exp *i[6+lk’&] dt’+ complex conjugate j . 

(2.6) 

(2.7) 
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Notice now that for all m, the first difference in (2.7) is the 

difference, at a single time (t), between the values of P, at two points 

in some bounded phase space domain, since, by assumption, equation (1.1) 

defines a stable oscillator. Therefore this difference must itself be 

bounded as a function of m, for all values of I. It follows that the 

term proportional to m in the last expression in (2.7) must, for 

nonresonant Y, vanish for all I. This means 

a = ~~V(s)ds~i~hz(s)8(s)dsj-1 . (2.8) 

upon insertion of (2.8) into (2.5), we obtain (1.81, which is what we 

wanted to show. 

111. Steady State Near Coexistent Resonance 

In this case, and also in the next section, the perturbative 

hierarchy is 

LOPO= 0 , 

LP=LP , 
01 10 

L0P2= L,P, I 

etc. , where the differential operators LO and L, are now defined by 

a a 
Lo =-xc+ ‘Tly 

a 
- Ko(t)yx , 

L1 - 
&[y6K(t) + VU(t) + ; h2(t)&j ; 

(3.la) 

(3.lb) 

(3.lc) 

(3.2a) 

(3.2%) 
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Reasoning exactly as in the preceding section, we conclude from 

(3.la) that log PO is (up to an additive constant corresponding to 

normalization) a quadratic form that is constant in time whenever y and 

v are replaced by a solution to 

Y + KC(t)y = o , (3.3) 

and its time derivative. As in the preceding section, this means that 

log PO = 
1 

constant - T aiAijaj p 

where the symmetric matrix A is time-independent, and where the ai are 

defined by (2.4), now in terms of solutions yi to (3.3). (Summation 

over repeated indices is understood.) Since coexistent resonance means 

that the Yi are either both periodic or both antiperiodic in time T, it 

follows that A is not further constrained by the periodicity of PC. 

Thus, we proceed immediately to consider the consistency of (3.lb). 

As in the preceding section, we shall reason from the time-integral 

of (3.1b). In this case, however, we shall have to integrate only over 

one period of length T, not over many, because now every solution y(t) 

to (3.3) satisfies y(t+mT) = (kjmy(t), and therefore the analogue here 

of the left-hand side of (2.7) is in fact strictly zero for all m, since 

our Gaussian assumption implies P(y,v,t) = P(ky, +v,t). After an easy 

calculation, we are led in this way to 

0 = ai[BA+ACAlijaj + $Y(s)ds - TrCA , 

(3.4) 

(3.5) 

for all a 1 and a2, where the matrices B and C are defined by 
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B - W-'$ds{Skb) 

+ Y(S) 
-Y,(s)Y2(s) 

i 

-y,(s)i,(s) 

Y,(S)jT,(S) Y2(S)ir, (3) )i 

and 

Cij = dsh2(sjyi(s)yjb) . 

The quantity W in (3.6) is the Wronskian of y, and y2, i. e. 

wGy; * 
12 - Y2Y, * 

In deriving (3.5)-(3.7) we have used the inversion of (2.41, 

(3.6) 

(3.7) 

(3.8) 

y = W-IL-a 1y2 + a2Y,l , 

(3.9) 

v = w-l C-a,;, + a2;, ] . 

Equation (3.5) implies that 

Tr CA = ijY(s)ds , (3.10) 

and also that the symmetric part of the matrix BA + ACA vanishes, i. e. 

BA + ABT + ZACA = 0 , (3.11) 

Where the superscript "T" signifies matrix transposition. In writing 

(3.11) we have used the symmetry of A and of C. 
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In order to solve (3.11) for A, we first rewrite it as F5 

A-'B+BA = T -1 
-2c . (3.12) 

It follows from (3.2) that A-'B + C is an antisymmetric matrix. up to 

overall scale, however, there is only one antisymmetric 2 x 2 matrix, 

namely 

(3.13) 

Thus, we may write 

A = B(ao-C) 
-1 

= B(oC-a)o/[o'+detC] , (3.14) 

where a is some number. The second equality in (3.14) follows from the 

identity 

-1 
(MS+ Ma) = -atMs-Ma]a/CdetMs+detMal , (3.15) 

satisfied by all symmetric (Ms) and antisymmetric (M,) 2 x 2 matrices. 

In order to determine a, we exploit the symmetry of A by writing 

0 = TrAo = Tr(aB-BoC)/[a'+ detC] . 

It follows that 

(3.16) 

a = TrBaC/TrB = TraCB/TrB . (3.17) 
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It is not hard to verify that (3.10) is automatically satisfied 

when A is given by (3.14) and (3.17): Simply write 

TrCA = TrAC = TrB(ao-C)-I((-ao-C)+ aa) = - TrB + aTrAa = - TrB , (3.18) 

and then observe that the definition (3.6) implies that 

Tr B = - $Y(s)ds . (3.19) 

This completes our steady-state calculation near coexistent 

resonance. Let us now verify that when 6K is much larger than the other 

small scales Y and h2, but still itself small, then the right-hand-side 

of (3.4) approaches the nonresonant exponent in (1.81, with B given by 

the small-GK form derived in Appendix B. In this limit, we have, for 

most purposes, 

B--Da , 

where the symmetric matrix D corresponds to the 6K-part of B, times 0. 

Approximation (3.20) may not be applied to the trace of 8, to which 6K 

does not contribute, according to (3.19). From (3.20) and (3.19), and 

the definitions (3.14) and (3.171, it follows that in this limit, A 

becomes 

A- - Do; - o(TrCD/IjY(s)ds) - Cl-’ - C(jY(s)dsjLTrCDl-‘D . 

Therefore, up to an additive constant, 

log PO = - 4 aiAijaj- - i~Y(s)dslC~dsh2(s)yi(s)Dijyj(s)l-~ 

(3.20) 

(3.21) 

*aD 
P Pqaq : 

(3.22) 
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Upon comparison with (B.14)-(B.16), we see that this is the desired 

result. 

IV. Steady State Near Noncoexistent Resonance 

In this section, we shall determine both P0 and P, because, as we 

shall see, pO alone gives only a very poor characterization of the 

approach to noncoexistent resonance. Indeed, we shall see that P0 is 

completely independent of 6K in this case. Moreover,we shall also see 

that the integral of PO over the entire y-v plane is infinite, so that 

one cannot compute normalization even in principle without explicit 

reference to higher-order corrections. 

It will be convenient in what fOllOwS to let y,, in the definition 

Of 
al' be the one periodic 01‘ antiperiodic solution of (3.3). It then 

fOllOWS from the COnStanCy Of the Wronskian Of y, and y2 that 

y2(t+T) = ily2(t) + by,(t)1 , (4.1) 

for all t, where A is some nonzero constant, and where the signs plus 

and minus, respectively, correspond to periodic and antiperiodic y,. The 

combinations a 1 and a2 then satisfy 

a,(y,v,t+T) = i-a,(Y*v,t) 

(4.2) 
a2(y,v,t+T) = i[a,(y,v,t) + na,(Y,v*t)l . 

As in the preceding section, we conclude From (3. la) That (up to 

an additive constant that we may ignore without consequence) log P,, 

takes the Form (3. 3), again with Constant Aij. Because of (4. Z), 
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however, periodicity of PO now leads to the constraints 

0 = Az2= AAz2+ A,2 . (4.3) 

We are thus left with 

log PO = - 
:Alla: . 

(4.4) 

The integral of PO over the entire y - v plane is then infinite because, 

according to (4.43, PO at any one time depends on only one linear 

combination of y and v. 

I* order to determine A,,, we begin, as in the preceding sections, 

by integrating (3.lb) with respect to time, with y and v replaced by a 

solution to (3.3) and its time derivative. Since we want to calculate 

pl as well, however, we shall leave the range of integration arbitrary, 

instead of restricting it to an interval of length an integral multiple 

of T, as we have done so far. The result is 

P’[Y(t.‘), f(t’), t’l - P’CyCt), $(t), t1 

= P&“ds[Y(s) - 4 A,,~‘(s)Y:(s) + aTA,,C i A,,A2(s)yf(s) 

(4.5) 

- w-‘Lu(s);,(sj + ~K(s)Y~(s)~Y,(s)~ + a,a2A,‘W-‘[y(s);,(s) 

+ GK(s)y,(s)]y,(s)j , 
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where a , and a2 are defined by substituting y(t) and y(t) for y and V in 

(2.4), and W is as in (3.8). In order to proceed further, we require 

mope detailed information concerning the structure of P,. We reason as 

follows: 

Since the Full P(y,v,t) is Gaussian, we expect that log P can be 

written as F6 

1 2 1 
logP=logN-;,A,,a, -= iiJ a E .(t)aj- F(t) + O(Y2) , 

where the (not necessarily constant) coefficients Eij( = ~~~~ and F are 

formally O(Y). Thus we can write 

P, = -t' Z? aiEij J a. + FIP 0 . 

In view of (4.2), periodicity of P, means that 

2 
E,,(t) = E,,(t+T) + 2AE,2(t+T) + A E22(t+T) , 

E,2(t) = E12(t+T) + A E,2(t+T) , 

E22(t) = E22(t+T) , 

F(t) = F(t+T) . 

(4.6) 

(4.7) 

(4.8a) 

(4.8b) 

(4.8~) 

(4.86) 
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When (4.7) is substituted into (4.5), and then coefficients of 

identical monomials in a, and a2 on the left and right sides are 

equated, the result is 

-4 IE,,(E') - E12(t)l = A&'dsC & A,112(s)~+) 

(4.9a) 

- w-'[Y&~(S) + GK(s)~~(s)ly,(s)l , 

- [E12(t') - E12(t)l = A,,W-'j~'ds[Y(s);,(s) + 6K(s)y,(s)iy,(s) , (4.9b) 

E22(t') - Ez2(t) = 0 , 

- LF(t') - F(t)] = I;'ds[Y(s) -4 A,,X%)y~(s)1 . 

In view of the periodicity constraint (4.8d), it follows from 

(4.9d), by setting t'=t+T, that 

All = 
nl~r(s)dslL~h2(s)y:(s)dsl-' . 

(4.9c) 

(4.9d) 

(4.10) 

As promised, this contains no reference to 6K. 
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In view of (4.10) and the periodicity constraint (4.8b), it follows 

from (4.9b), upon setting t'=t+T, that the constant E22 is given by 

E22 = 2A-'[~v(s)ds]~~h2(s)y~(s)dSl-~W-'~dStY(S)~,(S) 

(4.10) 

+ GK(s)~,(s)l~,(s) . 

Similarly, it follows from (4.8a),(4.9a),(4.10), and (4.11), that El2 is 

given by 

E12(t) =-; A2E22 + A,, [&f(s)ds - W-'r;-,dsCY(s);,(s) +GK(s)~2(s)l~~(s~j (4.") 

* Y’(S) - 2w -~~~+TdslY(s);2~s)+6K(s)Y2(S)lYl(s)~ . (4.12) 

The second equality in (4.12) follows from (4.1). 

With (4.9a), (4.961, and (4.10)-(4.121, we have a complete 

determination of PO and p,, up to an inessential additive constant in F 

(it can be absorbed by normalization) and a significant additive 

constant in E,,, 

I* order to determine E,, completely, we exploit the requirement 

that periodic P2, be consistent with (3.1~). An economical way of doing 

this is as follows: 
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Begin, as before, by writing 

P,[y(t’),~(t’),t’l-P,ly(t), ;(t),tl = j;‘ds(L,P,)[y(s), i(S),31 . (4.13) 

Next observe that P2, just like P,, must be equal to PO times a 

polynomial in a, and a2. Thus, when both sides of (4.133 are multiplied 

by PO-‘. we have an equality between two polynomials. The zeroth-order 

part of this equality is 

X(t’)-X(t) = - j;‘ds[Y(s)F(s) + ~2(s)C~i(s)Eij(s)~j(s) 

- A,,~:(s)F(s)l}, (4.14) 

where x is the zeroth order monomial in PO-lP2. Since periodicity of P 2 

implies periodicity of x, it follows from (4.14) that 

0 = ds{Y(s)F(s) + ; A2~s~~yi(s)Eij’s)yj(s) - A,,y:(s)F(s)]j . (4.15) 

upon inserting (4.9a),(4.9d),(4.10)-(4.12) into (4.15), one obtains a 

complete determination of E 11’ 

We need not write out the solution in full. Let us record here 

only the part of (4.6) (ignoring normalization) that dominates when 6K 

is much larger than Y and A’, but still small, in order to verify that 

WI? can recover the small-&K form of the nonresonant exponent in (1.8). 

In this limit, we have, up to an additive constant, 
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: Alla: - 
1 
7 aiEij j a.- F - - jQV(s)dsJ[sA2(s)y:(S)dsj-1W -' 

+;A-'$6K(s)y+)ds + a,a2[$6K(s)y~(s)ds-2A-!~~+T6K(S)y,(S)y2(S)dS] 

+ af[W + ibA:(s)y:(s)dS] -1 

- bf'sK(s)y;(s)dsj;+Th')y2(s')lh-ly2(sf) + y,(s*)jds' - 

‘4 
t+Tdshz(s)y:(S)~~dS'GK(S')Y,(S~)Y2(s')l~~ 

Using the (anti)periodicity of yl, as well as the identities 

~~+T6K(s')y$(s')ds' = l;+ThK(s')y;(s')ds' 

+2AI~GK(s')y,(S')y2(s')ds' + A2&K(s')Y$s')ds , 

I~+TGK(s')y,(~')y2(~')ds' = j~+TsK(s')y,(s')y2(s')ds' 

(4.16) 

(4.17) 

+ AJ;6K(s')y:(S')ds' , (4.18) 

it is straightforward (if tedious) to establish that (4.16) is 
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equivalent--to within a remainder of O((6K)2)--to the result of 

substituting (B.24) and (B.25) into the exponent in (1.81, which is what 

we wanted to show. 

v. STRUCTURE OF A 

In real storage ring applications 111, the noise envelope h(t) is 

more properly written as a product H(t)n(t), where II ("dispersion," or 

"off-energy function") is the periodic solution of the differential 

equation 

fi + y(t); + K(t)n = C(t) , 

and where neither H nor G (both periodic) is singular at resonance. An 

exact expression for the periodic solution to (5.1) is given in equation 

(A.12). One sees that this can be infinite whenever the tune v 

approaches an integer. 

In Appendix C we show that n is generally O(Y-') when Y is small, 

and when the identification (1.10) holds, and when the limitting tune at 

K is an integer, and when the scale of G has no formal connection with 

the scale of Y. 

We are thus forced to conclude that in the case of near-integral 

tune, the calculations in the last two sections correspond to the limit 

Y+O, together with the formal identification (I.IO), and with the formal 

identification 

H(t)C(t') = 0 (Y3'2) , 

for all t and t', which guarantees (1.11). 

(5.1) 

(5.21) 
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Appendix A: Exact Probability; Exact TI ____ ---__ 

1. Steady State Probability 

The general solution of (1.1) iS 

y(t) = y(O)Q(t,O) + y(O)R(t,O) + j;dsR(t,s)A(s)<(s) , 

where Q and R satisfy 

~d2 
l- 

dt* 
+ Y(t) c + K(t)1 =o , 

dt 

with 

Q(s,s) = 1 & Q(t=s,s) = 0 

R(S,S) = 0 2 R(t=s,s) = I . 

(A.‘) 

(A.2) 

(A.3) 

Since 5 is a Gaussian random variable, it follows 171 that when 

y(O) and y(O) are fixed, then y and v - y are also Gaussian random 

variables, and they are distributed according to the probability density 
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(211) -' [detZ1!'2exp - ; {Z,,Cy-y(O)Q(t,O) - ;(O)R(t,O)l* 

+ z2,:v-Y~o~~~t,o~-;~o~~~t,o~12~ , 

where the symmetric matrix Z is defined by the quadratic form 

x~(Z-'),~X~ = <jx,J;dsR(t,s 

= $dsA*(s)jx,R 

A(S)<(S) + x 2 ?& J~dsR(t,s)h(s)s(s)12> 

t,s) + x 2 & R(t,s)i2 . 

The variables x, and x2 are introduced here for formal purposes only. 

In deriving the second equality in (A.5), we have used (1.6). 

We are especially concerned here with the limiting form to which 

z, <Y>, and <v> relax as t becomes very large. For this purpose, it is 

desirable explicitly to decompose Q and R into damped and oscillating 

factors. A lengthy but straightforward calculation establishes that 

(A.41 

(A.5) 



-26- FERMILAB-PUB-8X/95-THY 

Fi(t,,s) = CB(t)B(s)l “‘sin(]i&)exp(- 4 JzY(s’)dS’) 9 (A.6) 

and 

Q(t,s) = ; Y(S) R(t,s) 

(A.71 

+ le(t)/B(s)l "'~cos[~: $&) - & i(s)sin(lz $&j]expj- 4 jiuCs)dsj , 

where B now corresponds as in (1.2) to the homogeneous undamped linear 

equation 

z + z[K - (n.8) 

It follows from (A.61 and (A.7), using the periodicity of t; and Y, 

that as t becomes large, we have 

<y> = y(O)Q(t,O) + &O)R(t,O)+O , 

(A.9) 

<v> = y(O)i(t,O) + ;(O)i(t,O)+O , 

and also 
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<(x,y + x2”)2>+xi(z-‘)ijxj’ 

lx,/a(t)J2111-e 
-$Y(s)ds l-1 

. j~_Tds12(s)8(s)e-r~Y(Sl)ds’ 

+ $t)i~b2/g(t)j - i (x, + 4 x2(gT - vct))J2il-e 
2i$ds/!3(s)-$Y(s)dsI-! 

+ complex conjugate] , (A.101 

which is what we wanted to show. 

2. Periodic Solution To (5.1) 

As in the preceding subsection, the general solution to (5.1) is 

n(t) = n(O)Q(t.,O) + &O)R(t,O) + ];dsR(t,s)G(s) . (A.111 

Using the definitions of Q and R in (A.6) and (A.7), and the periodicity 

Of B,Y, and G, it is a straightforward matter to show as t becomes 

large, the right hand side of (A.11) relaxes to the periodic limit 
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n(t)+[(l-<)2 + 4~sin2~vj-‘5”z(t)J~-Tds 8”2(s)G(s) 

t ds’ 
* 1(1-t) + 2S(sinnv)cos(vv- is pv)]exp(- ; @“)ds”) 

(5 - exp - $Y(s)dsj , which is then the desired result. 

Appendix B: I And 6 Near Linear Resonance --~--- _--- 

In this Appendix we derive the leading terms in the expansion of 

B(t), and of the quadratic form defined by the curved brackets in (1.8), 

in powers Of 6K = K(t)-Kg(t), where K. is as in Sections III and IV. 

For this purpose, we have found it convenient to calculate 6 and I 

as follows: Let Y,‘(t) and y2’(t) be arbitrary linearly independent 

solutions F7 of (1.1); let W’ be their Wronskian, as in (3.8); and let 

a,’ and a2’ be defined in terms of y,’ and y2’ as in (2.4). Then we can 

write 

I = /sin2Tvj-‘1wt/-‘/a;(y,v,t+T)a;(y,v,t) 

(A.12) 

(8.1) 

and 

- ai(y,v,t+T)a;(y,v,t)I , 

@ = /sin2~~vi-‘jW’/-‘ly;(t+T)y;(t) - Yi(t+T)Y;(t)i r 

where the tune v is obtained from y; and y; according to 

(B.2) 
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2 cos27Tv=(W’) -‘[yi(t+Tj;;(t) - Y;(t+Tj;;(tj - ;i(t+TjY;(tj 

+ ys(t+Tjyi(tjj * (B.3) 

We need not derive these expressions here. One can easily verify 

them by using the explicit form (1.2); one can also derive them directly 

from the more abstract formalism explained in [31. In either case, note 

that (B.2) is simply the coefficient of v ’ in (B lj . I as is required by 

the explicit expression in (1.8). 

1. Near Coexistent Resonance 

In this case, our plan is pertubatively to construct solutions, y; 

and Y;, to (1.1) out of arbitrary solutions y, and y2 to (3.3j, and then 

to insert the results of this construction into the right-hand sides of 

(B.lj-(8.3). 

Thus, we write 

Y;(t) = Yi(tj + Yil(tj + Yi2(tj + . . . ) (8.4) 

where each yim is 0((6K)~j. We shall be concerned here priinarily with 

the first order corrections yil. Before we characterize these 

corrections in greater detail, however, let us first explain some 

simplifications of a general nature that result when an expansion of the 

form (8.4) is substituted into (B.ljk(B.3). 

We begin with (8.3). When (B.4) is substituted into (B.3j, we have 
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*cos2n” = i w-l {2w-zw, + ‘I- ; )iY, wi2, (t) 

- y.&,,(t) - ;,(t)y,,(t) + j,(t) y,,(t) + (t+t+T)J 

- 2w2 + 2(w;/w) + lY,w;22 (t) - Y2w;,2(t) - ;,wY22w 

+ $,(t)y,,(t) + (t+t+T)jj + W-l {y,, (t+T);2, (t) - y2, (t+T);, , (t) 

- ;,,(t+T)y2,(t) + ;21(t+T)Y,,(t)j + 0((6K) 3, 
j 1 (B.5) 

where W, 
w1' and W2 are the first three terms in the pertubative 

expansion of the Wronskian W’, and the plus and minus signs correspond, 

respectively, to periodic and antiperiodic y, and y2. It follow3 from 

(B.5), together with the identities 

Wl = Y1i2, + Y,,i;! - Y$,, - Y2,s;, P 

. 
w2 = Y,Y22 + Y,2Y2 - Y2Y,2 - Y22Y, + Y,,Y2, - Yz,Y,, 1 (8.6) 

and with the fact that all terms in W must be constant. in time, that the 

tune v must satisfy 
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/sin&v/ = LW-’ (Cy,, (t+T) 7 y,, (t)iCir,, (t+T) 7- i21 (t)lt 

- [y,,(t+T) 5 y2,(t)j[;,,(t.+T) 7 ;ll(t)ijj”2+ Oc(6K)2) . (B.7) 

In addition, we also have 

I = 1W/-‘jsin~vl-‘Ia2[y(;,,(‘+T) 7 y,,(t)) - v(y,,(t+T) T Y,,(t))] 

-a,[y(G2,(t+T) ? i,,(t)] - v(y21(t+T) 7 y2,(t))li + 0(&K) I (B.8) 

and 

6 = IWl-‘lsinZnvl-‘Jy2(t)ly,,(t+T) T y,,(t)] 

- y,(t)[y,,(t+T) -, y2,(t)]j + OiCoK)j I (B.9) 

where a, and a 2 are defined in terma of y,(t) and y,(t) as in (2.4). 

In order to proceed further, we now need to characterize the yi, in 

greater detail. We begin by observing that each yi, must satisfy 

+t) + KO(t)yil(t) = - yi(t)6K(t) . 

The general solution of (8.10) is 

(B.10) 
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yi,(t) = pijyj't) - W-!rt, da yi(s)~K(s)~y,(s)y,(t)-y2(3~y,(t)~ 9 (B.11) 
0 

where the reference time to is arbitrary, and the pij are constants of 

integration. A complete determination of the pij requires that we 

choose boundary conditions for the yi,. This will not be necessary here, 

however, since in fact all reference to the uij and to to dissappears 

when (B.11) is substituted into (B.7)-(B.9). Indeed, it follows from 

(B.ll) and the (anti) periodicity of the the yi that 

yil(t+T) T Yi,(t) = 7 W~~~dsyi~s~~K~3~~Y,~s)y2~t~-Y2~S~Y,~t~~ . (B.12) 

In view of (B.12), (B.7)-(8.9) are equivalent to 

lsin2xvl = [det 01. -"' + 0 ((6K)') , 

I = (WI-![det D]-"21aiDijajj+0((6K)) , 

6(t) = IWj-'jdet Dj '-"'lyi(t)Dijyj(t)j + O((6K)) , 

where the symmetric matrix D is defined by 

(8.13) 

(8.14) 

(8.15) 
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D = W-’ $ds 6K(3) [;;;Y+ y,:., -;;;;;“;‘) t 

Note that the second absolute value in (B.14) is actually a 

quadratic form in y and v if and only if aiDijaj never changes sign as a 

function of a, and a2, i.e. if and only if both eigenvalues of D have 

the aame sign, i.e. detDZ0. Thus, as long as we assume that motion 

governed by K. + 6K is stable and nonresonant -- i.e. positive sin22rrv - 

det D -- then (B.14) is a self-consistent representation of a quadratic 

invariant. Positivity of detD also ensure3 that the absolute value 

signs in (8.14) and (B.15) can be deleted in forming the ratio II/I, 

which is required for the conclusion at the end of Section III. 

2. Near Noncoexistent Resonance 

Our plan in this case is the same as in the preceding subsection, 

except that now only Y2 is a completely arbitrary solution of (3.3). We 

require, as in Section I’J, that Y, be either periodic or antiperiodic. 

We shall ca’cu~~~de~~~~,~&’ c~~~w~~~~l b,““y, I a;,:‘“;; :I 1;: 
highest order in 

first-order COrrectiOn to y, and y2. This will be leading order for 

Isin2iwj, and next-to-leading order for Isin2nvl I and lsin2nvl6. These 

results permit one to compute I and 6 to leading order in 6K, and B/I to 

next-to-leading order. This will be sufficient to justify any remark, 

made elsewhere in this paper, that concerns noncoexistent resonance and 

that refers to this Appendix. 

(~.i6) 
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Proceeding as before, one can now show easily that 

Isin2nvl = jw-‘niu,(t)l;,,(t)-;,,(t+T)1-;,(t)iu,,(t)-~,,(t+T)l~t”~ 

- [1+0(6K)J , 

and al.50 

IsinZirvlI = la/wjja,*(l-w-'w,) 

+ A-'a2[y(j,,(t) +,,(t+T)) - v(y,,(t) 7 y,,(t+T))1 

- A-'a,[y(;21(t) 7 ;2,(t+T)) - v(Y21(t) 7 Y2l(t+T)jj 

+ a&';,,(t) - vy,,(t)] + 0 l(aK)'j] , 

and 

(B.17) 

(~.'a) 

IsinZ~vjB(t) = jA/Wl[y:(t)(l-W -‘W,) 

+ A-'y,(t,Ly,,(t, 7 Y,, (t+T)i - A-'Y,(t)[Y2,(t) T Y2,(t+T) 1 

+ y,(t)y,,(t) + 0 l(SK)*)j r (B.19) 

where A is as defined in (4.1), and Wl is the first-order term WI-W. 
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Expression (B.11) for Y,, and y2, implies that 

w-‘w, = T~!J = I+,+ ci22 , 

y,,(t) TY” (t+T) = y,(t)[-Aq2 + AW-!J;+Tds6K(s)y;(s) 
0 

- W-!J;+T ds6K(s)yt(s)y2(s)j 

+ y,(t)W-lmdssK(s)y:(s) I 

Y2, (t) 7 Y*, (t+T) = y,(t)[-Au22 + AW-1J~+TdssK(s)yl(s)y2(s) 
0 

- W-!J;+T ds6K(s)y;(s ,] + y,(t)W -1J~+TdsGK(s)y,(s)y2(s) . 

When (B.20)-(B.22) are subst ituted into (B.17)-(B.19), we obtain 

(B.20) 

(B.21) 
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/sinZnvl = [A$dssK(s)y~(s)j"2[1 + 0(&K)] , (B.23) 

jsin2w)I = iA/Wj[aT + n-'ai Dijaj 

+ a,W-'ja,$dssK(s)yT(s) - al~~+TdsSK(s)y,(s)Y2(s)j 

+ O[(SK)'jj , 

jSin2nvlB(t) = jA/Wjly~(t) + A-!yi(t)cijYj(t) 

+ Y,(t)W-'[y,(t)'jds6K(s)y:(s) - y,(t 

(8.24) 

+ 0 ((SK)2)j , (B.25) 

where the matrix i is defined as in (B.16), but with 4 replaced by jt+T. 

Appendix C: n Near Resonance 

In this Appendix we determine the leading term in the formal 

expansion of n 

n = n -, + ‘,. + ‘I, + . . . 

in powers of Y, assuming the identification 6K = K-K0 = o(y) , as in 

Sections III and IV and Appendix B. Each term in this expansion is to 

be periodic in time, with period T. 

Since the exact expression for n,(A. lZ), becomes sngular only when 

the tune v approaches an integer, we assume in what follows that K. 

generates resonant dynamics of the periodic kind. 

(C.1) 
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The perturbative hierarchy into which (5.1) decomposes when CC.11 

is introduced is 

n-, + Kg(t) “-, = 0 I 

no + KO(t)r,o = -Y(t);-, - GK(t)rl-, + C(t) . 

cc.21 

CC.31 

1. Near Coexistent Resonance 

In this case, the general periodic solution to (C.2) is 

rl-‘(t) = c,y,(t) + c2y2(t) , cc.41 

where the ci are constants, and the yi are as in Section III. The ci 

are determined by the requirement that (C.3) be consistent with periodic 

no, as follows: 

The general solution of (C.3), for no, is 

no(t) = d,y,(t) + d2y2(t) + W-!l", ds[C(s)-Y(s)~_,(s)-6K(s)n_l(s)~ 
0 

- ly,(s)y,(t) - y,(s)y,(t)J , (C.5) 

where the reference time t o is arbitrary, and where the di are constants 

of integration. W is as defined in (3.8). This is periodic with period 

T if and only if riO(t,,+T) = qo(tO) and kO(tO+T) = +i,(t,). This is 

equivalent to 

0 = $ds[C(s) - Y(s)r~_,(s)-SK(s)~_,(s)j (c.6) 

It follows from (c.6) that 
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0 = d2Ayl(t0+T) + W 
-, tO+T 

I 
t0 

dslG(s)-Y(s)~_l(s)-SK(s)n_l(s)j 

- [y,(s)y2(tO+T) - y2(s)y,(t0+T '91 , 

0 = d2A;,(t0+T) + W 
-, tO+T 

I, 
0 

ds[Gk.)-3'(s)n-,(s)-6K(s )ii-,(s)J 

- ~y,(s);,(t,+T)-y,(s)~,(tO+T)j . (C.9) 

These two equations provide a consistent determination of d2 as long as 

2. Near Noncoexistent Resonance 

In this case, the general periodic solution to (C.2) is 

n_,(t) = cy,(t) I (C.8) 

ci = W-'("B)I:mdsG(s)Yj(s) , (C.7) 

where B and o are the matrices defined in (3.6) and (3.13). We shall 

not comment on the conditions under which B cannot be inverted. 

where y, is as in Section IV. Periodicity of no now requires that 

0 = $dsjG(s) - V(s);i-,(s) - 6K(s)n-,(~)~y,(~) . 

It follows from (C.10) that c is given by 

(C.10) 

c = i$ds(Y(s);,(s) + ~K~s~y,~s~~Y,~s~J~'~dsG~s~yl(S~ . (C.11) 

According to the analysis in Appendix B, the inverse in (C.ll) is 

nonsingular when system (A.81 is nonresonant in linear order in ‘r and 

6K. 
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FOOTNOTES 

Fl . Strictly speaking, (1.1) actually describes Only one 

contribution--the betatron oscillation--to the displacement. It 

also omits terms that couple horizontal and vertical motion. For 

simplicity, we shall ignore such complications here. We shall also 

ignore oscillations along the beam direction. 

F2. We shall not consider K (or, where equation (A.8) is more 

appropriate, K-(1/2)Y-(1/4)Y2) that can lead to explosive growth. 

F3. The assumption of centered Gaussian noise is made here for 

convenience. Strictly speaking, the right-hand side of (1.5) should 

more properly be defined by a Poisson-like process 

y-t., - u , 
J. i 

where the ti and ui are both random variables, and <ui> is not zero 

111. If this were analyzed according to the general framework 

developed in Section I. 4. d of 141, one would find, upon 

comparison with the calculation in our Appendix A, that the 

steady-state distribution is the same--up to a translation--as the 

steady-state distribution corresponding to (1.5), as long as h(t) 

is related to the (periodic) density p(t) Of the time variables ti, 

and the (periodic) mean square value of the Ui at time t, according 

to 

AZ(t) = p(t)&(t) . 

Thus, the theory in the body of the present paper actually refers 
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to the distribution of the variables y and v about their 

(periodically time-dependent) means. These means themselves are 

given, respectively, by the periodic solution to 

; + Y(t); + K(t)y = p(t)<u>(t) , 

and its time derivative. These are small and nonsingular as long as 

the system is far from linear resonance, as is clear from equation 

(A.12). The leading behavior of these mean values near resonance 

can be obtained using the method described in Appendix C. For 

convenience, we have also idealized the precise way in which noise 

drives the damped oscillator in (1.5). In a real storage ring, the 

coupling to noise actually takes the form (within the Gaussian 

assumption, for simplicity). 

p+Yp+Ky=h< , 

; - p = A’< , 

where h’ is in general not zero, as would be implied by (1.5). When 

a nonzero h’ is present, the right-hand side of (1.7) should be 

augmented by l/2 (A~)2a2p/ay2 + ,u* a2p/ayav. The analysis 

described in this paper is easily extended to this more general 

setting. 

F4. Equation (1.1) cannot have one solution periodic in time T and one 

solution antiperiodic in time T, because the Wronskian of two such 

functions could not be constant and non-zero, as the Wronskian of 

two distinct solutions to (1.1) must be. 
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F5. Because we are concerned here only with stable systems, and 

therefore with normalizable probabilities, we proceed here as if A 

is generally invertible. If one wishes not to make this assumption 

a priori, one can supplement our analysis of (3.11) as follows: 

(3.11) implies that (B+AC)A=bo, where b is a number, and o is as in 

(3.13). Either bf0, in which case A is invertible and we can 

proceed as in the text, or b=O. In the latter instance, either both 

eigenvalues of A are nonzero, in which case A is again invertible, 

or at last one eigenvalue of A vanishes. In the latter case, in an 

orthogonally rotated basis in which A=diag (w,O), nonzero A and 

(B+AC)A=O imply B 2,=0, which is only possible when (TrB)2-4detBt0. 

According to (3.6) and (8.131, this mean that (A.8) is unstable to 

linear order in Y and SK. In this case the general solution (I .2) 

must be replaced by one involving hyperbolic functions. Although 

this line of thought can be developed further, the details are not 

especially illuminating, and we shall not pursue them beyond this 

point. 

F6. Note that when P satisfies (4.61, then the condition that the 

integral jPdydv be unity implies that N- (2n)-~WtA,lE2,]1’2 = 

O(Y”2 ) in the limit Y-*0, according to the identifications (1.10) 

and (1.11). 

F7. In what follows, we shall need to distinguish solutions of (1.1) 

from solutions of (3.3). Thus, in this Appendix we denote solutions 

of (1.1) with primes. Solutions of (3.3) will carry no special 

marking. 
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